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A USE OF LIGHTHILL'S GENERALIZED FUNCTIONS IN THE
SOLUTION OF OPTIMAL CONTROL PROBLEMS

Ernest S. Armstrong

The usual definition of -the Dirac "3- function" as a function which
vanishes everywhere except at a single point but whose integral over the
entire real line is unity is not a rigorous mathematical definition. No
mathematical function can have these properties.

There are, however, several methods of rigorously using such symbolic
expressions. In each the concept of a function is generalized to include
all continuous functions, all Lebeséue integrable functions; and new
objects a simple example of which is the "3 - function“ . As a result of
this generality the theory is referred to as the theory of generalized
functions.

Probably the most mathematically sophisticated approach, requiring a
knowledge of measure theory and lebesque integration, is due to L. Schwartz.
An introduction to Schwartz's French work (reference 1) has been prepared in
English by I. Halperin (reference 2). Fortunately, there is another for-
mulation, presented in a text by M. T. Lighthill (reference 3) and
originally due to G. Temple (reference 4), requiring only a knowledge of
ordinary calculus. Lighthill's approach, a brief introduction to which
is presented in Appendix A, is to construct generalized functions in

terms of sequences of continuous functions. For example, a representation
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(not unique) for the Dirac "3- function" is the sequence {:e_ntz(n/n)%}l
In the 1limit as n - « i: e'ntz(n/ﬂ)% dt - 1 and e—ntz(n/ny% takes on
the properties of the "d3- function" . 1In Lighthill's text it is
essentially established that sets of equivalent sequences (see Appendix A)
form an additive abelian group over which differentiation is defined. It
was found that this theory could be applied to a class of optimal control
problems. Appendix A contains the basic definitions and properties of
Lighthill's formulation which are needed to present the applicationf
The general result of applying an optimal control theory, such as
Pontryagin's maximum principle (reference 5), to a controllaﬁle dynamic
system is a two-point boundary value problem. A large class of these
boundary value problems take the form.
I. Given the dynamic equation (written in scalar form for
simplicity)
x = f(x, sgn p, 4, t), t€ [to, tl] , x(tg) = x°,

determine the parameter o such that at tp, e(ty) = 0.

The variable x 1s a state or conjugate variable of the control theory,
p is a continuous switching function, and @ is a function of x(t1),
a, and t; representing a terminal condition. The function f is
continuous in x, sgn p (see Appendix A for definition), and u, and
piecewise continuous in t with points of discontinuity occurring at the

zeros of the continuous function pex(t), o, t}., The usual approach for
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the solution of such problems is to devise an algorithm whereby an
assumed value of o can be corrected so as to drive e(tl) to zero. |

This requires the evaluation of the expression ax (tl) describing the

da
influence of a on x(t7). It is the purpose of this discussion to
indicate how Lighthill's generalized function theory can be used to
obtain an equation for %5 (), te [to, tl] .
a

In the sense of ordinary functions we can write

of d(sgn p) dp 4 of ax , of
g_,f: 1 = F oo 2=
aa (x, sgnp, a, t) o(sgn p) &0 da O8xda da

Let t* be a zero of p(x(t), a, t) and S(t*) be the set of zeros of

p on [to, t1] . If EE ¥ O then as a generalized function |

dt  t=t* 1
of d(sgn p) do is represented |
d(sgn p) dp da

by X Q(t*) 8(t - t*) where
S(t*)

d
Q(t*) = = 2 sgn p (t*7) dL_(t*) EE (t*)

6(sgn p) O
5(t - t*) = the Dirac "s- function" of t - t*

and % ) represents the sum over all t* of p(x(t), a, t) in [to, tl] .
S(t#




-4 -

Let P(t) be the generalized function corresponding to the ordinary

function Of dx + Of . As generalized functions  we can write
ox da  Aa
by property 3 of Appendix A.

d dx

d (x)= 3 Q(t*) (¢t - t¥*) + P(t).
dt da du S(t*)

Applying first property 1 and then 2 of Appendix A the (ordinary function)

equation results.

‘ t
t dx of dx . F
1 (t) = dx (4,) - 5 Q(t*) H(t - t*) (5z = + of d =
— - - - —— ds —dt_o
{o [da @ ° S(t*) io * du BE) dt

for all "good" functions F(t).

(see Appendix)
This in turn leads, by the integral form of the fundament lemma of the
calculus of variations (reference 6), to the integral equation

The &% () = &% (0) + 5 Q(4%) H(t - %) +

du da S(t*)

b of ax , of s

1 x4 3;)d¢. By solving this equation in conjunction
0

with the x equation, dx (t;) results.
du
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By way of application of generalized functions in a computational
algorithm, the following problem was solved:

Find the optimal thrust magnitude and direction of
a space vehicle, launched from the surface of the
moon, such that it will rendezvous with a minimum
of fuel expenditure with a target vehicle in a
circular orbit about the moon. The moon is assumed
to have an inverse square law gravitational field.
Rendezvous is interpreted to be the nulling of the
relative position and velocity of the two vehicles.

Pontryagin's maximum principle (reference 5) was applied to the
three dimensional equations describing the relative motion of the two
spacecraft yielding an optimal control law and a (vector) two point
boundary problem of the form I. An algorithm was formulated requiring

the evaluation of dx(t4) (now a matrix) which was computed by an
da _
integral equation of the form II. The equations were programed and

solved on an IBM 7094 digital computer. The algorithm was shown to work
quite well yielding both planar and non~planar minimum fuellréndezvous
trajectories in about 7 minutes of computer time.

Space does not permit a complete discussion of the algorithm and
optimiiation results. It is intended that thls discussion will serve
to make the reader aware of a particular use of Lighthill's theory of
generalized functions in analysis and of a specific application resulting
from the use of optimal control theory. More complete details of both the

theory and application are found in reference 7.
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APPENDIX A
GENERALIZED FUNCTIONS

Certain definitions and properties of generalized functions as
presented in reference 3 are contained in this section for reference
in the main text and to give the reader a general idea of the con-
cepts involved.

Definition 1 -~ A good funciion, F(t), is one which is
everywhere differentiable any number of
times such that it and all its derivatives
approach zero as its argument approaches
+oo,

Definition 2 -~ A sequence hn(t) of good functions is
called regular if, for any good function
F(t), .the limit

HR [ na(t) F(t) exists.

Definition 3 ~ A generalized function, (t), is defined
as a regular sequence hp(t good
functions, i.e. h(t)— hn t)

Thus each generalized function is really

the class of all regular sequences equivalent,
in the sense that the 1limit in Definition 2

is the same for each sequence, to a given
regular sequence.

By the symbol §. h(t) F(t) dt one means

Lm (* pp(t) F(t) dt.
o o
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Definition 4 - Two generalized functions, h(t) and
g(t), are equal if and only if

_S: n(t) F(t) at = > glt) F(t) at

for all good functions F(t).
Definition 5 - The derivative h'(t) is defined by the
sequence h'p(t), i.e. h'(t)— [hn‘ (t)]

Property 1§ h'(t) F(t) at = - § h(t) F'(t) dt

Property 2 If the ordinary function f£(t) is such that’
g (t241)™ f£(t) dt exists (for some natural
number N) then a generalized function h(t)

exists such that for all. F(t)

ﬁh(t) F(t) dt = g: £(t) F(t) dt.

The integral on the right is the integral in the ordinary
sense. When the generalized function h(t) has been
defined, this integral has a meaning also in the theory

of generalized functions and the above equation states that

these two meanings are the same.

If sgn(t) = { 1 ,1t>0
-1 , t<0

Signum function

H(t) = /2 (1 + sgn t) Heaviside function
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0 , t#0
5(t) = )} at =0, 3(t) is infinite in such
a way that

Dirac "3~ function'

gb(t) at = 1

then d sgn t =2 gH = 28(t)
dt dt

Definition 6 - If h,(t) 4is a generalized function of t
for each value of a parameter « then

d h,(t) = lim ha'(t) - hg(t)

da a'-q a! - ¢

Property 3 If dhg(t) exists, 4. 4 hy (t)
da do df
=d 4 ny(t)

dt do



